Stereoselective Synthesis of Highly Substituted γ -Lactams by the [3+2] Annulation of α -Siloxy Allylic Silanes with Chlorosulfonyl Isocyanate

Antonio Romero and K. A. Woerpel*

Department of Chemistry, University of California, Irvine, California 92697-2025 kwoerpel@uci.edu

Received March 11, 2006

The γ -lactam functionality represents an important core structure in numerous biologically active compounds.^{1,2} Functionalized chiral γ -lactams have also proven to be valuable intermediates for the synthesis of γ -amino acids.³ In this letter, we report the stereoselective construction of γ -lactams by the [3+2] annulation reaction of α -siloxy allylic silanes with N-chlorosulfonyl isocyanate (ClSO₂NCO). The resultant γ -lactam could be elaborated by diastereoselective nucleophilic substitution via an N-acyliminium ion⁴ to afford highly substituted β -hydroxy- γ -lactams after oxidation of the carbon-silicon bond.5

The [3+2] annulation reaction of allylic silanes has proven to be a powerful transformation for the preparation of highly

substituted five-membered rings.⁶ For example, the [3+2]annulation of allylic silanes with ClSO₂NCO⁷ provides the key ring systems for the syntheses of (+)-blastmycinone⁸ and (\pm) -peduncularine.⁹ These two syntheses illustrate the two reaction pathways through which ClSO₂NCO can proceed.8 Annulation across the C=O bond yields the N-chlorosulfonyl iminolactone, which was utilized in the synthesis of (+)-blastmycinone.⁸ The more common annulation involves addition across the C=N bond to afford the N-chlorosulfonyl lactam, the intermediate required for the synthesis of (\pm) -peduncularine.⁹ The general preference for annulation across the C=N bond can be overridden by steric effects, as shown in the (+)-blastmycinone synthesis.^{8,9} In the absence of any steric or electronic preference, a mixture of both products is observed.8

ORGANIC LETTERS

2006Vol. 8, No. 10

<u>2127–2130</u>

⁽¹⁾ Corey, E. J.; Li, W.-D. Z. Chem. Pharm. Bull. 1999, 47, 1-10.

⁽²⁾ Gouliaev, A. H.; Senning, A. Brain Res. Rev. 1994, 19, 180-222. (3) Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X.; Takemoto, Y. J. Am. Chem. Soc. 2005, 127, 119-125.

⁽⁴⁾ For reviews of N-acyliminium ion chemistry, see: (a) Speckamp, W. N.; Moolenaar, M. J. Tetrahedron 2000, 56, 3817-3856. (b) Maryanoff, B. E.; Zhang, H.-C.; Cohen, J. H.; Turchi, I. J.; Maryanoff, C. A. Chem. Rev. 2004. 104. 1431-1628.

^{(5) (}a) Tamao, K.; Ishida, N.; Tanaka, T.; Kumada, M. Organometallics 1983, 2, 1694-1696. (b) Tamao, K. In Advances in Silicon Chemistry; JAI: Greenwich, CT, 1996; Vol. 3, pp 1-62. (c) Fleming, I.; Henning, R.; Parker, D. C.; Plaut, H. E.; Sanderson, P. E. J. J. Chem. Soc., Perkin Trans. *1* 1995, 317–337. (d) Fleming, I. Chemtracts-Org. Chem. 1996, 9, 1–64.

⁽⁶⁾ Danheiser, R. L.; Dixon, B. R.; Gleason, R. W. J. Org. Chem. 1992, 57, 6094-6097.

^{(7) (}a) Roberson, C. W.; Woerpel, K. A. J. Org. Chem. 1999, 64, 1434-1435. (b) Isaka, M.; Williard, P. G.; Nakamura, E. Bull. Chem. Soc. Jpn. 1999, 72, 2115-2116. (c) Colvin, E. W.; Loreto, M. A.; Monteith, M.; Tommasini, I. In Frontiers in Organosilicon Chemistry; Bassindale, A. R., Gaspar, P. P., Eds; The Royal Society of Chemistry: Cambridge, U.K., 1991; pp 356-365. (d) Colvin, E. W.; Monteith, M. J. Chem. Soc., Chem. Commun. 1990, 1230-1232.

⁽⁸⁾ Peng, Z.-H.; Woerpel, K. A. Org. Lett. 2001, 3, 675–678.
(9) Roberson, C. W.; Woerpel, K. A. Org. Lett. 2000, 2, 621–623.

In our efforts to expand the scope of [3+2] annulations, we investigated annulation reactions of α -siloxy allylic silanes. Although the reactions of α -siloxy allylic silanes have been reported,¹⁰ these silanes have not been utilized in [3+2] annulations. Application of α -siloxy allylic silanes in [3+2] annulations was desired because of their expedient syntheses,¹¹ the facile preparation of asymmetric variants,¹² and the functionality available in the annulation products.

A preliminary investigation of α -siloxy allylic silanes with ClSO₂NCO provided promising results. Allylic silane **1** was treated with ClSO₂NCO to provide γ -lactam **2**, after reductive removal of the chlorosulfonyl moiety, as the only annulation product (Scheme 1). Lactam **2** was formed as a single

diastereomer as determined by ¹H NMR spectroscopic analysis, and its relative stereochemistry, which is consistent with other annulations,^{7–9} was proven by X-ray crystal-lography. No formation of the *N*-chlorosulfonyl iminolactone was observed, a marked difference from previous annulation studies involving ClSO₂NCO.⁸

The [3+2] annulation to form γ -lactams was general for a wide range of α -siloxy allylic silanes (**3**-**10**). In all cases, γ -lactams were formed exclusively. The stereospecificity of this reaction was illustrated by the annulation reactions of the isomeric allylic silanes **1** and **6**, which provided diastereomeric lactams **2** and **14** (Table 1). Compounds bearing tetrasubstituted carbon stereocenters¹³ and bicyclic structures were accessed through this methodology with the appropriate allylic silanes (**7** and **8**). The annulation was also shown to proceed with retention of stereochemical integrity. Enantioenriched allylic silanes (*S*)-**1** afforded γ -lactam (+)-**2** with no loss of optical purity, thus providing a route to chiral, nonracemic γ -lactams.¹⁴

A study of various silyl moieties demonstrated that more electron-donating¹⁵ and more sterically encumbering silyl

(12) Asymmetric syntheses of α -hydroxy allylic silanes: (a) Takeda, K.; Ohnishi, Y.; Koizumi, T. *Org. Lett.* **1999**, *1*, 237–239. (b) Sakaguchi, K.; Higashino, M.; Ohfune, Y. *Tetrahedron* **2003**, *59*, 6647–6658.

(13) Dennisova, I.; Barriault, L. Tetrahedron 2003, 59, 10105-10146.

Table 1.	Annulation	Reactions	of	α -Siloxy	Allylic	Silanes ^a
with ClSO ₂ NCO ^b						

^{*a*} R¹ = Ph₂CH. R² = PhCMe₂. ^{*b*} All transformations were performed in CH₂Cl₂ at 0 °C unless otherwise stated. ^{*c*} Analysis of unpurified mixtures by ¹H NMR spectroscopy revealed only lactam products. ^{*d*} Isolated yields. ^{*e*} A 5:1 mixture of diastereomers was observed by ¹H NMR spectroscopy of the unpurified annulation products. ^{*f*} Annulation was performed at -78 °C. ^{*s*} As determined by chiral HPLC.

groups¹⁶ led to improved yields for the [3+2] annulation. Replacing the phenyl group of the silicon with benzhydryl or cumyl functionalities (allylic silanes **9** and **10**) resulted

⁽¹⁰⁾ Hosomi, A.; Hashimoto, H.; Sakurai, H. J. Org. Chem. 1978, 43, 2551–2552.

⁽¹¹⁾ Synthesis of α -siloxy allylic silanes was achieved by the protection of α -hydroxy allylic silanes. Numerous reports have been published for the synthesis of α -hydroxy allylic silanes: (a) Brook, A. G. *Acc. Chem. Res.* **1974**, 7, 77–84. (b) Danheiser, R. L.; Fink, D. M.; Okano, K.; Tsai, Y.-M.; Szczepanski, S. W. *J. Org. Chem.* **1985**, *50*, 5393–5396. (c) Ager, D. J.; Fleming, I.; Patel, S. K. *J. Chem. Soc., Perkin Trans. 1* **1981**, 2520–2526. (d) Burke, S. D.; Saunders, J. O.; Oplinger, J. A.; Murtiashaw, C. W. *Tetrahedron Lett.* **1985**, *26*, 1131–1134. (e) Cirillo, P. F.; Panek, J. S. *J. Org. Chem.* **1994**, *59*, 3055–3063. (f) Koreeda, M.; Koo, S. *Tetrahedron Lett.* **1990**, *31*, 831–834.

in improved yields of the desired product as compared to analogous substrates 1 and 4.

The exclusive formation of γ -lactam products in the [3+2] annulation of α -siloxy allylic silanes with ClSO₂NCO demonstrated that α -siloxy allylic silanes do not behave like other allylic silanes. The difference in behavior may be understood by analyzing the reactivities of the zwitterionic intermediates.^{7a} These intermediates possess different characteristics depending on the substitution at the α -position. In previous studies, allylic silanes without an α -heteroatom were used, resulting in β -silyl stabilized carbocation intermediate **IA**.¹⁷ These electrophiles would be attacked along a trajectory of 90° from the carbon plane (Figure 1).¹⁸ Allylic

Figure 1. Ring-closing intermediates in the [3+2] annulation mechanism.

silanes possessing an α -heteroatom lead to a β -silyl oxocarbenium ion intermediate **IB**.¹⁹ The trajectory of approach for attack onto an oxocarbenium ion is likely to be closer to the Burgi–Dunitz angle (109°).²⁰ The difference in trajectories diminishes any steric interactions that disfavor cyclization on the nitrogen (Figure 1).⁸

A [3+2] annulation with an α -acetoxy allylic silane demonstrates how a small perturbation in the intermediate affects product distribution. Treatment of α -acetoxy allylic silane **19** with ClSO₂NCO afforded a mixture of *N*-chlorosulfonyl γ -lactam **20** and *N*-chlorosulfonyl iminolactone **21** (Scheme 2). Utilizing an α -acetoxy allylic silane would generate an intermediate possessing an α -oxygen with less electron-donating ability.²¹ The diminished oxocarbe-

(14) The stereochemistry of (*S*)-1 was assigned by analogy. See ref 12a. The stereochemistry of the lactam (+)-2 was assigned utilizing the accepted [3+2] annulation mechanism. For the mechanism of the [3+2] annulation, see ref 7a.

(17) (a) Lambert, J. B. *Tetrahedron* **1990**, *46*, 2677–2689. (b) Lambert, J. B.; Zhao, Y.; Emblidge, R. W.; Salvador, L. A.; Liu, X.; So, J.-H.; Chelius, E. C. *Acc. Chem. Res.* **1999**, *32*, 183–190.

(18) Laube, T. Acc. Chem. Res. 1995, 28, 399-405 and references therein.

(19) Stabilization of an oxocarbenium ion by a β -silyl group is consistent with IR studies that show hyperconjugation between σ_{CSi} and π^*_{CO} . Peddle, G. J. D. *J. Organomet. Chem.* **1968**, *14*, 115–121.

(20) Rakhmankulov, D. L.; Akhmatdinov, R. T.; Kantor, E. A. Russ. Chem. Rev. 1984, 53, 888-899.

nium ion character in this intermediate produces an intermediate that behaves more like **IA** (Figure 1). The lower

 a R¹ = Ph₂CH. R² = PhCMe₂. b For reaction conditions, see Supporting Information. c All reactions afforded one diastereomer as determined by 1 H NMR spectroscopy of the unpurified products. d Isolated yield.

selectivity of the [3+2] annulation of α -acetoxy allylic silanes with ClSO₂NCO, as compared with α -siloxy allylic

⁽¹⁵⁾ Mayr, H.; Patz, M. Angew. Chem., Int. Ed. Engl. 1994, 33, 938– 957.

^{(16) (}a) Knölker, H.-J.; Foitzik, N.; Goesmann, H.; Graf, R. Angew. Chem., Int. Ed. Engl. **1993**, *32*, 1081–1083. (b) Akiyama, T.; Ishikawa, K.; Ozaki, S. Chem. Lett. **1994**, 627–630. (c) Groaning, M. D.; Brengel, G. P.; Meyers, A. I. J. Org. Chem. **1998**, *63*, 5517–5522.

⁽²¹⁾ Begue, J.-P.; Charpentier-Morize, M. Acc. Chem. Res. 1980, 13, 207-212.

silanes, suggests that the electron-donating ability of the heteroatom is critical for selective product formation.

The [3+2] annulation of α -siloxy allylic silanes with ClSO₂NCO provided γ -lactams possessing an *N*,*O*-acetal moiety, which is ideal for substitution via *N*-acyliminium ion chemistry.⁴ Initial attempts to substitute γ -lactams possessing the phenyldimethylsilyl group were unsuccessful. The products obtained from these experiments had undergone desilylation. To suppress desilylation, the sterically encumbered benzhydryldimethylsilyl and cumyldimethylsilyl groups were utilized.²²

A series of γ -lactams **16–18** possessing these larger silyl groups were converted to γ -substituted γ -lactams via *N*-acyliminium ion intermediates. High diastereoselectivity was observed for a range of nucleophiles, including allylic silanes, silyl enol ethers, and zinc and aluminum complexes (Table 2).²³ The products were formed by nucleophilic attack anti to the silyl group, in accord with previous studies.²⁴

Oxidation of the silyl moiety afforded β -hydroxy- γ -lactams.²⁵ Exposing γ -lactam **27** to Tamao–Fleming oxidation conditions⁵ provided β -hydroxy- γ -lactam **28** in 63% yield as a single diastereomer as determined by ¹H NMR spectroscopic analysis (Scheme 3).

(22) Peng, Z.-H.; Woerpel, K. A. Org. Lett. 2000, 2, 1379-1381.

(23) The stereochemistry of γ -lactam **25** was confirmed by X-ray crystallography and nOe studies. The stereochemistry of all other substituted γ -lactams were proven by nOe studies.

(24) Panek, J. S.; Yang, M. J. Am. Chem. Soc. **1991**, 113, 9868–9870. (25) The benzhydryldimethylsilyl group led to better oxidation yields as compared to the cumyldimethylsilyl group.

In summary, the [3+2] annulation reaction of α -siloxy allylic silanes with chlorosulfonyl isocyanate provides an efficient stereoselective synthesis of γ -lactams. These γ -lactams can be further substituted at the γ -position with high diastereoselectivity. Oxidative cleavage of the C–Si bond allowed access to highly substituted β -hydroxy- γ -lactams.

Acknowledgment. This research was supported by the National Science Foundation (CHE-0315572). A.R. thanks the National Institute of Health for a predoctoral fellowship. We thank Dr. Phil Dennison for assistance with NMR spectroscopy, Dr. Joseph Ziller and Dr. Bob Doedens for X-ray crystallography, and Dr. John Greaves and Dr. John Mudd for mass spectrometry.

Supporting Information Available: Full experimental procedures and product characterization. This material is available free of charge via the Internet at http://pubs.acs.org.

OL060596G